✅ Công thức tính lim ⭐️⭐️⭐️⭐️⭐️

công thức lim

cong thuc lim

Giới hạn của hàm số, cách tính và bài tập áp dụng

Giới hạn hữu hạn

cong thuc lim 1
cong thuc lim 2

Giới hạn vô cực, Giới hạn ở vô cực

cong thuc lim 3
cong thuc lim 4
cong thuc lim 5

Giới hạn 1 bên

cong thuc lim 6
cong thuc lim 7

Bài tập áp dụng tìm giới hạn

cong thuc lim 8
cong thuc lim 9
cong thuc lim 10
cong thuc lim 11
cong thuc lim 12
cong thuc lim 13
cong thuc lim 14
cong thuc lim 15
cong thuc lim 16
cong thuc lim 17
cong thuc lim 18
cong thuc lim 19
cong thuc lim 20
cong thuc lim 21
cong thuc lim 22
cong thuc lim 23
cong thuc lim 24
cong thuc lim 25

Ví dụ 8: Tìm giới hạn sau

cong thuc lim 26
cong thuc lim 27
cong thuc lim 28
cong thuc lim 29
cong thuc lim 30
cong thuc lim 31
cong thuc lim 32
cong thuc lim 33
cong thuc lim 34
cong thuc lim 35
cong thuc lim 36

Mối quan hệ giữa giới hạn một bên và giới hạn tại một điểm

cong thuc lim 37
cong thuc lim 38
cong thuc lim 39
cong thuc lim 40

Bảng các công thức tính giới hạn hàm số

Một số phương pháp tính lim thủ công

Tính giới hạn của dãy số

Cách 1: Sử dụng định nghĩa tìm giới hạn 0 của dãy số

Cách 2: Tìm giới hạn của dãy số bằng công thức

Một số công thức ta thường gặp khi tính giới hạn hàm số như sau:

cong thuc lim 41

Công thức trên có thể biến tấu thành các dạng khác tuy nhiên về bản chất thì không thay đổi.

Cách 3: Sử dụng định nghĩa tìm giới hạn hữu hạn

cong thuc lim 42

Cách 4: Sử dụng các giới hạn đặc biệt cùng với định lý để giải quyết các bài toán tìm giới hạn dãy số

  • Ta thường sử dụng các dạng giới hạn:
cong thuc lim 43
  • Nếu biểu thức có dạng phân thức tử số và mẫu số chứa lũy thừa của n thì ta tiến hành chia cả tử và mẫu cho n^k với k là mũ cao nhất ở bậc mẫu.
  • Nếu biểu thức chứa căn thức cần nhân một lượng liên hợp để đưa về dạng cơ bản thì ta có một số lượng liên hợp cần thiết như sau:
cong thuc lim 44

Cách 5: Áp dụng công thức tính tổng cấp số nhân lùi vô hạn, tính giới hạn, biểu thị một số thập phân vô hạn tuần hoàn thành phân số.

  • Cấp số nhân lùi vô hạn là cấp số nhân vô hạn và có công bội là |q| < 1
  • Tổng các số hạng của một cấp số nhân lùi vô hạn (Un)

S = u1 + u2 + u3 + u4 + …. + un = u1 / ( 1 – q )

  • Mọi số thập phân đều được biểu thị dưới dạng lũy thừa của 10.

Câu 6: Tìm giới hạn vô cùng của một dãy số bằng định nghĩa

cong thuc lim 45

Cách 7: Tìm giới hạn của một dày số bằng cách sử dụng định lý, quy tắc tìm giới hạn vô cực

Chứng minh một dãy số có giới hạn

Áp dụng định lý Vâyơstraxơ:

  • Nếu dãy số (un) tăng và bị chặn trên thì nó có giới hạn.
  • Nếu dãy số (un) giảm và bị chặn dưới thì nó có giới hạn.

Chứng minh tính tăng và tính bị chặn:

Chứng minh một dãy số tăng và bị chặn trên (dãy số tăng và bị chặn dưới) bởi số M ta thực hiện: Tính một vài số hạng đầu tiên của dãy và quan sát mối liên hệ để dự đoán chiều tăng (chiều giảm) và số M.

Tính giới hạn của dãy số ta thực hiện theo một trong hai phương pháp sau:

Phương pháp 1

Đặt lim un = a. Từ lim u(n+1) = lim f(un) ta được một phương trình theo ẩn a.

Giải phương trình tìm nghiệm a và giới hạn của dãy (un) là một trong các nghiệm của phương rình. Nếu phương trình có nghiệm duy nhất thì đó chính là giới hạn cảu dãy cần tìm. còn nếu phương trình có nhiều hơn một nghiệm thì dựa vào tính chất của dãy số để loại nghiệm.

Chú ý: Giới hạn của dãy số nếu có là duy nhất.

Phương pháp 2: Tìm công thức tổng quát un của dãy số bằng cách dự đoán. Chứng minh công thức tổng quát un bằng phương pháp quy nạp toán học. Tính giới hạn của dãy thông qua công thức tổng quát đó.

Tính giới hạn của hàm số

Để tính giới hạn của hàm số ta có thể thực hiện một số phương pháp như sau:

  • Dùng định nghĩa để tìm giới hạn
  • Tìm giới hạn của hàm số bằng công thức
  • Sử dụng định nghĩa tìm giới hạn một bên
  • Sử dụng định lí và công thức tìm giới hạn một bên
  • Tính giới hạn vô cực
  • Tìm giới hạn của hàm số dạng 0/0
  • Dạng vô định

Dưới đây là một số công thức tính hàm số vô cùng cơ bản:

cong thuc lim 46

Cách tính lim bằng máy tính

Bước 1: Trước tiên hãy nhập biểu thức vào máy tính

Bước 2: Sử dụng chức năng đó là gán số tính giá trị biểu thức

Bước 3: Lưu ý gán các giá trị theo bên dưới:

+) Lim về vô cùng dương thì hãy gán số 100000

+) Lim về vô cùng âm thì hãy gán số -100000

+) Lim về 0 thì hãy gán số 0.00000001

+) Lim về số bất kì chẳng hạn như về +3 thì gán 3.000000001 còn về 3- thì gán 2.9999999999

Tính lim là một dạng bài tập khá cơ bản, tuy nhiên dạng toán này vẫn chiếm một vài câu trong đề thi trung học phổ thông quốc gia. Các bạn cần đảm bảo tính chính xác khi làm. Đặc biệt có thể sử dụng máy tính Casio để có thể tính toán nhanh và chính xác nhất.

Chuyên đề giới hạn và liên tục

CÁCH TÍNH GIỚI HẠN HÀM SỐ NHƯ THẾ NÀO?

TÍNH GIỚI HẠN HÀM SỐ DẠNG XÁC ĐỊNH

Nếu hàm f(x) xác định tại điểm lấy giới hạn. Thì ta chỉ việc thay điểm đó vào biểu thức dưới dấu lim sẽ được kết quả cần tìm.

cong thuc lim 47

Ta chỉ việc thay x=2 vào biểu thức trong dấu lim ta được -1/4. Và đó chính là kết quả của giới hạn trên.

TÌM GIỚI HẠN HÀM SỐ DẠNG BẤT ĐỊNH

Đối với dạng bất định ta quan tâm tới một số dạng thường gặp như sau:

1. TÌM GIỚI HẠN CỦA HÀM SỐ DẠNG 0 TRÊN 0

Đối với dạng 0 trên 0 ta lại chia làm 2 loại: Loại giới hạn không chứa căn và loại chứa căn.

Loại không chứa căn bao gồm các loại giới hạn đặc biệt và loại phân thức mà tử và mẫu là các đa thức.

Giới hạn đặc biệt dạng 0 trên 0 được đề cập đến trong chương trình phổ thông hiện nay là:

Cách tính giới hạn dạng 0 trên 0 loại đa thức trên đa thức thì ta phân tích thành nhân tử bằng lược đồ Hoocner.

cong thuc lim 48

Ta thấy x=1 là nghiệm của cả tử số và mẫu số. Ta dùng lược đồ Hoocner để phân tích tử số và mẫu số.

cong thuc lim 49

Còn để tính loại chứa căn ta thực hiện nhân cả tử và mẫu với biểu thức liên hợp.

cong thuc lim 50

Với căn bậc 3 ta cũng làm tương tự.

cong thuc lim 51

Ta có:

Trong trường hợp giới hạn có cả căn bậc 2 và căn bậc 3 thì ta thêm bớt 1 lượng để đưa về tổng hiệu của 2 giới hạn dạng 0 trên 0.

cong thuc lim 52
cong thuc lim 53

GIỚI HẠN DẠNG VÔ CÙNG TRÊN VÔ CÙNG

Với dạng giới hạn vô cùng trên vô cùng ta giải bằng cách chia cả tử và mẫu cho x với số mũ cao nhất của tử hoặc của mẫu. Lưu ý dạng này khi x tiến tới âm vô cùng chúng ta hay nhầm lẫn về dấu. Cụ thể khi đưa x vào trong căn bậc 2 ta cần để dấu – bên ngoài.

cong thuc lim 54
cong thuc lim 55

GIỚI HẠN DẠNG VÔ CÙNG TRỪ VÔ CÙNG

Với dạng vô cùng trừ vô cùng (vô cực trừ vô cực) ta thực hiện theo 2 phương pháp: Nhóm ẩn bậc cao nhất hoặc nhân liên hợp. Cách nào thuận lợi hơn ta tiến hành theo cách đó.

cong thuc lim 56

Trường hợp này chúng ta cần nhân liên hợp bởi vì nếu nhóm x thì sẽ lại đưa về dạng bất định 0 nhân vô cùng.

cong thuc lim 57

Bài này giống bài trên đều là dạng vô cùng trừ vô cùng. Nhưng ta lại để ý là hệ số bậc cao nhất trong 2 căn là khác nhau. Vì vậy bài này chúng ta nên nhóm nhân tử chung.

GIỚI HẠN DẠNG 1 MŨ VÔ CÙNG

Với giới hạn dạng 1 mũ vô cùng ta tính thông qua giới hạn đặc biệt sau:

cong thuc lim 58
cong thuc lim 59

GIỚI HẠN DẠNG 0 NHÂN VÔ CÙNG

Về bản chất giới hạn dạng 0 nhân vô cùng có thể đưa về dạng 0 trên 0 hoặc dạng vô cùng trên vô cùng qua 1 vài phép biến đổi theo lưu ý ở đầu bài viết này phần định nghĩa. Với dạng giới hạn này chúng ta nên biến đổi về dạng xác định hoặc các dạng giới hạn vô định đã nêu ra ở trên. Tùy từng bài cụ thể chúng ta cần biến đổi cho phù hợp.

cong thuc lim 60
cong thuc lim 61

Phân dạng và các phương pháp giải toán chuyên đề giới hạn

BÀI 1. GIỚI HẠN CỦA DÃY SỐ.Dạng 1. Sử dụng định nghĩa tìm giới hạn 0 của dãy sốDạng 2. Sử dụng định lí để tìm giới hạn 0 của dãy số Dạng 3. Sử dụng các giới hạn đặc biệt và các định lý để giải các bài toán tìm giới hạn dãyDạng 4. Sử dụng công thức tính tổng của một cấp số nhân lùi vô hạn, tìm giới hạn, biểu thị một số thập phân vô hạn tuần hoàn thành phân số Dạng 5. Tìm giới hạn vô cùng của một dãy bằng định nghĩaDạng 6. Tìm giới hạn của một dãy bằng cách sử dụng định lý, quy tắc tìm giới hạn vô cựcMỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo}BÀI 2. GIỚI HẠN HÀM SỐDạng 1. Dùng định nghĩa để tìm giới hạn Dạng 2. Tìm giới hạn của hàm số bằng công thứcDạng 3. Sử dụng định nghĩa tìm giới hạn một bên Dạng 4. Sử dụng định lý và công thức tìm giới hạn một bên Dạng 5. Tính giới hạn vô cực Dạng 6. Tìm giới hạn của hàm số thuộc dạng vô định 0/0Dạng 7. Dạng vô định Dạng 8. Dạng vô địnhMỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo}BÀI 3. HÀM SỐ LIÊN TỤCDạng 1. Xét tính liên tục của hàm số f(x) tại điểm x0 Dạng 2. Xét tính liên tục của hàm số tại một điểmDạng 3. Xét tính liên tục của hàm số trên một khoảng KDạng 4. Tìm điểm gián đoạn của hàm số f(x) Dạng 5. Chứng minh phương trình f(x)=0 có nghiệm MỘT SỐ BÀI TẬP LÝ THUYẾT {Tham khảo}

cong thuc lim 62
cong thuc lim 63
cong thuc lim 64
cong thuc lim 65
cong thuc lim 66
cong thuc lim 67
cong thuc lim 68
cong thuc lim 69
cong thuc lim 70
luck8 | i9bet | daga | Lucky88 | AZ888 | SKY88 | ko66 | kuwin | Oxbet | Hay88 | shbet | shbet | Sv368 | 8kbet | OKVIP | Minecraft 1.20 | 77win | ceds.edu.vn | 789win | Luck8 | BJ88 | IwinClub | Nohu90 | BK8 | 8Day | cwin